Chapter 1
Getting Started

Thank you for choosing the MS-7502 Series Micro-ATX mainboard. The MS-7502 Series mainboards are based on Intel® G33 & ICH9DH chipsets for optimal system efficiency. Designed to fit the advanced Intel® Core 2 Quad/Core 2 Duo/ Dual-Core (E2xxx) LGA775 processor, the MS-7502 Series deliver a high performance and professional desktop platform solution.
Mainboard Specifications

Processor Support
- Intel® Core 2 Quad/Core 2 Duo/Dual-Core(E2xxx) processors in the LGA775 package

Supported FSB
- 1333/ 1066/ 800 MHz

Chipset
- North Bridge: Intel® G33 chipset
- South Bridge: Intel® ICH9DH chipset

Memory Support
- DDR2 800/ 667 SDRAM (8GB Max)
- 4 DDR2 DIMMs (240pin / 1.8V)

LAN
- Supports PCIE LAN 10/100 Fast Ethernet by Intel 82562V

Audio
- Chip integrated by Realtek® ALC888S
- Flexible 8-channel audio with jack sensing
- Supports 2 SPDIF-out (coaxial & optical)
- Compliant with Azalia 1.0 Spec
- Meet Microsoft Vista Premium spec

SATA
- 6 SATAII ports by ICH9DH
- Supports storage and data transfers at up to 300 MB/s

1394
- Supports 1394 by VIA VT6308

FDD
- 1 floppy port
- Supports 1 FDD with 360KB, 720KB, 1.2MB, 1.44MB and 2.88MB
Connectors

Back panel
- 1 PS/2 mouse port
- 1 PS/2 keyboard port
- 1 Serial port
- 6 USB 2.0 Ports
- 1 1394 port
- 1 LAN jack (10/100)
- 5 flexible audio jacks
- 1 Optical SPDIF-Out port
- 1 Coaxial SPDIF-Out port

On-Board Pinheaders / Connectors
- 3 USB 2.0 pinheaders
- 1 1394 pinheader
- 1 SPDIF-out pinheader
- 1 CD-in connector
- 1 front audio pinheader
- 1 VFD connector
- 1 SCART-Out connector

Slots
- 1 PCI Express x16 slot
- 1 PCI Express x1 slot
- 1 PCI white slot, support 3.3V/ 5V PCI bus Interface, support 1 device
- 1 PCI blue slot, support 3.3V/ 5V PCI bus interface, support 2 devices

Form Factor
- Micro-ATX (24.5cm X 24.5cm)

Mounting
- 8 mounting holes
Mainboard Layout

MS-7502 Series
(MS-7502 v1.X) Micro-ATX Mainboard
This chapter provides you with the information about hardware setup procedures. While doing the installation, be careful in holding the components and follow the installation procedures. For some components, if you install in the wrong orientation, the components will not work properly.

Use a grounded wrist strap before handling computer components. Static electricity may damage the components.
Quick Components Guide
When you are installing the CPU, make sure to install the cooler to prevent overheating. If you do not have the CPU cooler, consult your dealer before turning on the computer.

Important

Overheating
Overheating will seriously damage the CPU and system. Always make sure the cooling fan can work properly to protect the CPU from overheating. Make sure that you apply an even layer of thermal paste (or thermal tape) between the CPU and the heatsink to enhance heat dissipation.

Replacing the CPU
While replacing the CPU, always turn off the ATX power supply or unplug the power supply's power cord from the grounded outlet first to ensure the safety of CPU.

Overclocking
This mainboard is designed to support overclocking. However, please make sure your components are able to tolerate such abnormal setting, while doing overclocking. Any attempt to operate beyond product specifications is not recommended. We do not guarantee the damages or risks caused by inadequate operation or beyond product specifications.

Introduction to LGA 775 CPU
The pin-pad side of LGA 775 CPU.
The surface of LGA 775 CPU. Remember to apply some thermal paste on it for better heat dispersion.
MS-7502 Mainboard

CPU & Cooler Installation

When you are installing the CPU, **make sure the CPU has a cooler attached on the top to prevent overheating**. Meanwhile, do not forget to apply some thermal paste on CPU before installing the heat sink/cooler fan for better heat dispersion. Follow the steps below to install the CPU & cooler correctly. Wrong installation will cause the damage of your CPU & mainboard.

1. The CPU socket has a plastic cap on it to protect the contact from damage. Before you install the CPU, always cover it to protect the socket pin.

2. Remove the cap from lever hinge side (as the arrow shows).

3. The pins of socket reveal.

4. Open the load lever.

Important

1. Confirm if your CPU cooler is firmly installed before turning on your system.
2. Do not touch the CPU socket pins to avoid damaging.
3. The availability of the CPU land side cover depends on your CPU packing.
5. Lift the load lever up and open the load plate.

6. After confirming the CPU direction for correct mating, put down the CPU in the socket housing frame. Be sure to grasp on the edge of the CPU base. Note that the alignment keys are matched.

7. Visually inspect if the CPU is seated well into the socket. If not, take out the CPU with pure vertical motion and reinstall.

8. Cover the load plate onto the package.
9. Press down the load lever lightly onto the load plate, and then secure the lever with the hook under retention tab.

10. Align the holes on the mainboard with the heatsink. Push down the cooler until its four clips get wedged into the holes of the mainboard.

11. Press the four hooks down to fasten the cooler. Then rotate the locking switch (refer to the correct direction marked on it) to lock the hooks.

12. Turn over the mainboard to confirm that the clip-ends are correctly inserted.

Important

1. Read the CPU status in BIOS (Chapter 3).
2. Whenever CPU is not installed, always protect your CPU socket pin with the plastic cap covered (shown in Figure 1) to avoid damaging.
3. Mainboard photos shown in this section are for demonstration of the CPU/cooler installation only. The appearance of your mainboard may vary depending on the model you purchase.
Hardware Setup

Memory

These DIMM slots are used for installing memory modules.

Dual-Channel mode Population Rule

In Dual-Channel mode, the memory modules can transmit and receive data with two data bus lines simultaneously. Enabling Dual-Channel mode can enhance the system performance. Please refer to the following illustrations for population rules under Dual-Channel mode.

1. DIMM_A1
2. DIMM_A2
3. DIMM_B1
4. DIMM_B2

DDR2
240-pin, 1.8V

Installation Guide:
- 56x2=112 pin
- 64x2=128 pin
Installing Memory Modules

1. The memory module has only one notch on the center and will only fit in the right orientation.

2. Insert the memory module vertically into the DIMM slot. Then push it in until the golden finger on the memory module is deeply inserted in the DIMM slot.

3. The plastic clip at each side of the DIMM slot will automatically close.

Important

- You can barely see the golden finger if the memory module is properly inserted in the DIMM slot.

Important

- DDR2 memory modules are not interchangeable with DDR and the DDR2 standard is not backwards compatible. You should always install DDR2 memory modules in the DDR2 DIMM slots.
- In Dual-Channel mode, make sure that you install memory modules of the same type and density in different channel DIMM slots.
- To enable successful system boot-up, always insert the memory modules into the DIMM_A1 first.
Power Supply

ATX 24-Pin Power Connector: JPWR3
This connector allows you to connect an ATX 24-pin power supply. To connect the ATX 24-pin power supply, make sure the plug of the power supply is inserted in the proper orientation and the pins are aligned. Then push down the power supply firmly into the connector. You may use the 20-pin ATX power supply as you like. If you'd like to use the 20-pin ATX power supply, please plug your power supply along with pin 1 & pin 13 (refer to the image at the right hand).

<table>
<thead>
<tr>
<th>Pin</th>
<th>SIGNAL</th>
<th>Pin</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>13</td>
<td>+3.3V</td>
</tr>
<tr>
<td>2</td>
<td>+3.3V</td>
<td>14</td>
<td>-12V</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>15</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>+5V</td>
<td>16</td>
<td>PS-ON#</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>17</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>+5V</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>PWROK</td>
<td>20</td>
<td>Res</td>
</tr>
<tr>
<td>9</td>
<td>5VSB</td>
<td>21</td>
<td>+5V</td>
</tr>
<tr>
<td>10</td>
<td>+12V</td>
<td>22</td>
<td>+5V</td>
</tr>
<tr>
<td>11</td>
<td>+12V</td>
<td>23</td>
<td>+5V</td>
</tr>
<tr>
<td>12</td>
<td>+3.3V</td>
<td>24</td>
<td>GND</td>
</tr>
</tbody>
</table>

ATX 12V Power Connector: JPW1
This 12V power connector JPW1 is used to provide power to the CPU.

<table>
<thead>
<tr>
<th>Pin</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>12V</td>
</tr>
<tr>
<td>4</td>
<td>12V</td>
</tr>
</tbody>
</table>

Important
1. Make sure that all the connectors are connected to proper ATX power supplies to ensure stable operation of the mainboard.
2. Power supply of 350 watts (and above) is highly recommended for system stability.
Back Panel

Mouse/Keyboard
The standard PS/2® mouse/keyboard DIN connector is for a PS/2® mouse/keyboard.

Serial Port
The serial port is a 16550A high speed communications port that sends/receives 16 bytes FIFOs. You can attach a serial mouse or other serial devices directly to the connector.

USB Port
The USB (Universal Serial Bus) port is for attaching USB devices such as keyboard, mouse, or other USB-compatible devices.

1394 Port
The IEEE1394 port on the back panel provides connection to IEEE1394 devices.

LAN
The standard RJ-45 LAN jack is for connection to the Local Area Network (LAN). You can connect a network cable to it.

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>LED State</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>Yellow</td>
<td>Off (steady state)</td>
<td>LAN link is not established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On (brighter & pulsing)</td>
<td>LAN link is established. The computer is communicating with another computer on the LAN.</td>
</tr>
<tr>
<td>Right</td>
<td>Green</td>
<td>Off</td>
<td>10 Mbit/sec data rate is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>100 Mbit/sec data rate is selected.</td>
</tr>
</tbody>
</table>
Hardware Setup

► Coaxial S/PDIF-Out
This SPDIF (Sony & Philips Digital Interconnect Format) connector is provided for digital audio transmission to external speakers through a coaxial cable.

► Audio Ports
These audio connectors are used for audio devices. You can differentiate the color of the audio jacks for different audio sound effects.
- Line-Out (Green) - Line Out, is a connector for speakers or headphones.
- SS-Out (Gray) - Side-Surround Out 7.1 channel mode.
- Line-In (Blue) - Line In is used for external CD player, tapeplayer or other audio devices.
- CS-Out (Orange) - Center/ Subwoofer Out in 5.1/ 7.1 channel mode.
- RS-Out (Black) - Rear-Surround Out in 4/ 5.1/ 7.1 channel mode.

► Optical S/PDIF-Out
This SPDIF (Sony & Philips Digital Interconnect Format) connector is provided for digital audio transmission to external speakers through an optical fiber cable.
MS-7502 Mainboard

Connectors

Floppy Disk Drive Connector: FDD1
This connector supports 360KB, 720KB, 1.2MB, 1.44MB or 2.88MB floppy disk drive.

Serial ATA Connector: SATA1 ~ SATA6
This connector is a high-speed Serial ATA interface port. Each connector can connect to one Serial ATA device.

Important
Please do not fold the Serial ATA cable into 90-degree angle. Otherwise, data loss may occur during transmission.
Hardware Setup

SCART Output Connector: JSCA1
This connector allows you to connect the output device with SCART spec. SCART is the established European standard for connecting home video equipments like TVs, VCRs, DVD players, etc.

![SCART Output Connector Diagram]

Front Panel Connectors: JFP1
The mainboard provides one front panel connector for electrical connection to the front panel switches and LEDs. JF_P1 is compliant with Intel® Front Panel I/O Connectivity Design Guide.

![Front Panel Connectors Diagram]

JF_P1 Pin Definition

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PS_ON</td>
<td>Power Switch On (1)</td>
</tr>
<tr>
<td>2</td>
<td>PS_ON</td>
<td>Power Switch On (2)</td>
</tr>
<tr>
<td>3</td>
<td>PWR_LED</td>
<td>Power LED (+)</td>
</tr>
<tr>
<td>4</td>
<td>PWR_LED</td>
<td>Power LED (-)</td>
</tr>
<tr>
<td>5</td>
<td>HDD_LED</td>
<td>HDD LED (+)</td>
</tr>
<tr>
<td>6</td>
<td>HDD_LED</td>
<td>HDD LED (-)</td>
</tr>
<tr>
<td>7</td>
<td>Reset</td>
<td>Reset (1)</td>
</tr>
<tr>
<td>8</td>
<td>Reset</td>
<td>Reset (2)</td>
</tr>
</tbody>
</table>
Fan Power Connectors: CPUFAN1, SYSFAN1
The fan power connectors support system cooling fan with +12V. When connecting the wire to the connectors, always note that the red wire is the positive and should be connected to the +12V; the black wire is Ground and should be connected to GND. If the mainboard has a System Hardware Monitor chipset on-board, you must use a specially designed fan with speed sensor to take advantage of the CPU fan control.

Important

1. Please refer to the recommended CPU fans at processor’s official website or consult the vendors for proper CPU cooling fan.
2. Fan cooler set with 3 or 4 pins power connector are both available for CPUFAN1.

CD-In Connector: AUX_IN1
This connector is provided for external audio input.
IEEE1394 Connector: J1394_1
This connector allows you to connect the IEEE1394 device via an optional IEEE1394 bracket.

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>PIN</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TPA+</td>
<td>2</td>
<td>TPA-</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>TPB+</td>
<td>6</td>
<td>TPB-</td>
</tr>
<tr>
<td>7</td>
<td>Cablepower</td>
<td>8</td>
<td>Cablepower</td>
</tr>
<tr>
<td>9</td>
<td>Key(no pin)</td>
<td>10</td>
<td>Ground</td>
</tr>
</tbody>
</table>

S/PDIF-Out Connector: JSPD1
This connector is used to connect S/PDIF (Sony & Philips Digital Interconnect Format) interface for digital audio transmission.
Front Panel Audio Connector: JAUD1
This connector allows you to connect the front panel audio and is compliant with Intel® Front Panel I/O Connectivity Design Guide.

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MIC_L</td>
<td>Microphone - Left channel</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>MIC_R</td>
<td>Microphone - Right channel</td>
</tr>
<tr>
<td>4</td>
<td>PRESENCE#</td>
<td>Active low signal signals that a High Definition Audio dongle is connected to the analog header. PRESENCE# = 0 when a High Definition Audio dongle is connected</td>
</tr>
<tr>
<td>5</td>
<td>LINE out_R</td>
<td>Analog Port - Right channel</td>
</tr>
<tr>
<td>6</td>
<td>MIC_JD</td>
<td>Jack detection return from front panel microphone Jack1</td>
</tr>
<tr>
<td>7</td>
<td>Front_JD</td>
<td>Jack detection sense line from the High Definition Audio CODEC jack detection resistor network</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>No control</td>
</tr>
<tr>
<td>9</td>
<td>LINE out_L</td>
<td>Analog Port - Left channel</td>
</tr>
<tr>
<td>10</td>
<td>LINE out_JD</td>
<td>Jack detection return from front panel JACK2</td>
</tr>
</tbody>
</table>

Front LCD Module Connector: JVFD1
This connector allows you to connect to Medion VFD LCD panel.
Front USB Connector: JUSB1 ~ 3
These connectors, compliant with Intel® I/O Connectivity Design Guide, is ideal for connecting high-speed USB interface peripherals such as USB HDD, digital cameras, MP3 players, printers, modems and the like.

Pin Definition

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>PIN</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>2</td>
<td>VCC</td>
</tr>
<tr>
<td>3</td>
<td>USB0-</td>
<td>4</td>
<td>USB1-</td>
</tr>
<tr>
<td>5</td>
<td>USB0+</td>
<td>6</td>
<td>USB1+</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>Key(no pin)</td>
<td>10</td>
<td>USBOC</td>
</tr>
</tbody>
</table>

Important

Note that the pins of VCC and GND must be connected correctly to avoid possible damage.
Jumper

Clear CMOS Jumper: JBAT1
There is a CMOS RAM onboard that has a power supply from an external battery to keep the data of system configuration. With the CMOS RAM, the system can automatically boot OS every time it is turned on. If you want to clear the system configuration, set the jumper to clear data.

Important
You can clear CMOS by shorting 2-3 pin while the system is off. Then return to 1-2 pin position. Avoid clearing the CMOS while the system is on; it will damage the mainboard.
Hardware Setup

Slots

PCI (Peripheral Component Interconnect) Express Slot
The PCI Express slot supports the PCI Express interface expansion card. The PCI Express x 16 supports up to 4.0 GB/s transfer rate. The PCI Express x 1 supports up to 250 MB/s transfer rate.

PCI (Peripheral Component Interconnect) Slot
The PCI slot supports LAN card, SCSI card, USB card, and other add-on cards that comply with PCI specifications.

Important
When adding or removing expansion cards, make sure that you unplug the power supply first. Meanwhile, read the documentation for the expansion card to configure any necessary hardware or software settings for the expansion card, such as jumpers, switches or BIOS configuration.

PCI Interrupt Request Routing
The IRQ, acronym of interrupt request line and pronounced I-R-Q, are hardware lines over which devices can send interrupt signals to the microprocessor. The PCI IRQ pins are typically connected to the PCI bus pins as follows:

<table>
<thead>
<tr>
<th></th>
<th>Order 1</th>
<th>Order 2</th>
<th>Order 3</th>
<th>Order 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI Slot 1</td>
<td>INT A#</td>
<td>INT B#</td>
<td>INT C#</td>
<td>INTD#</td>
</tr>
<tr>
<td></td>
<td>INT B#</td>
<td>INT C#</td>
<td>INTD#</td>
<td>INTA#</td>
</tr>
<tr>
<td>PCI Slot 2</td>
<td>INT C#</td>
<td>INTD#</td>
<td>INTA#</td>
<td>INT B#</td>
</tr>
</tbody>
</table>